Γρίφοι με Παράδοξα

Κάτω στους λυμένους γρίφους

 Άλυτοι Γρίφοι


Το παράδοξο του μπογιατζή (***)
 

γρίφος παράδοξο μπογιατζή
Στο Σχήμα 1 βλέπουμε μια επίπεδη επιφάνεια, χωρισμένη σε τμήματα. Το πρώτο τμήμα είναι τετράγωνο πλευράς $1\,εκ.$ Από το δεύτερο τμήμα και μετά, το κάθε νέο τμήμα έχει το διπλάσιο ύψος και το μισό πλάτος του προηγούμενου. Έτσι το εμβαδόν του κάθε τμήματος είναι πάντοτε $1\,εκ.^2$. Τα τμήματα αυτά είναι άπειρα σε πλήθος, οπότε το συνολικό τους εμβαδό είναι:
$E = 1\,εκ.^2 + 1\,εκ.^2 + 1\,εκ.^2 +\ldots$ , δηλαδή άπειρο.
Ένας μπογιατζής σκέφτεται πως αν ήθελε να βάψει αυτή την επιφάνεια θα χρειαζόταν άπειρη ποσότητα χρώματος.
Περιστρέφουμε τώρα την επιφάνεια γύρω από την ημιευθεία που βρίσκεται στο δεξιό σύνορο του Σχήματος 1 μέχρι να σχηματιστεί ένας πλήρης κύκλος. Προκύπτει έτσι το στερεό του Σχήματος 2 που αποτελείται από άπειρο πλήθος κυλίνδρων.
Ο όγκος ενός κυλίνδρου ακτίνας $r$ και ύψους $h$, δίνεται από τον τύπο: $V=πr^2h$.
O $ν\,$–οστός κύλινδρος του Σχήματος 2 μετρώντας από επάνω έχει ακτίνα $r=1/2^{ν-1}\,εκ.$ και ύψος $h=2^{ν-1}\,εκ.$ Άρα ο όγκος του $ν\,$–οστού κυλίνδρου είναι $V_ν=π/2^{ν-1}\,εκ.^3$.
Ο συνολικός όγκος του στερεού του σχήματος 2 είναι:
$$V=π\,(1+1/2+1/2^2+1/2^3+\ldots)\,εκ.^3$$ Μέσα στην παρένθεση του πιο πάνω τύπου έχουμε ένα γνωστό άθροισμα μιας γεωμετρική προόδου απείρων όρων, το οποίο συγκλίνει στην τιμή $2$. Άρα ο συνολικός όγκος του Σχήματος 2 είναι:
$$V=2π\,εκ.^3$$ Ας φανταστούμε τώρα ότι το στερεό του Σχήματος 2 είναι μέσα κούφιο, σχηματίζοντας ένα δοχείο. Για να το γεμίσει ο μπογιατζής θα χρειαζόταν χρώμα όγκου $2π\,εκ.^3$. Στη συνέχεια σκέφτεται πως εάν βουτούσε το επίπεδο του Σχήματος 1 μέσα στο δοχείο με το χρώμα, τότε θα το έβγαζε βαμμένο και μάλιστα και από τις δύο πλευρές.
Οδηγείται λοιπόν σε δύο αντιφατικά συμπεράσματα: το πρώτο είναι ότι το επίπεδο χρειάζεται άπειρη ποσότητα χρώματος για να βαφτεί και το δεύτερο είναι ότι αρκούν $6,28\,εκ.^3$ χρώματος περίπου. Σε ποιο σημείο του συλλογισμού του μπογιατζή βρίσκεται το λάθος;

Στείλτε την απάντησή σας εδώ

 

Το παράδοξο της σανίδας (*****)
 

Κατά τη γνώμη μου, όποιος επιλύει αυτό το παράδοξο χωρίς εξωτερική βοήθεια είναι ένας νέος Ισαάκ Νεύτων!
Για την παρακολούθηση της πιο κάτω απόδειξης απαιτούνται κάπως πιο προχωρημένες γνώσεις Φυσικής.
Μία σανίδα μήκους $L=1$ μέτρο, είναι γερμένη πάνω σε έναν τοίχο κάθετο με το έδαφος, όπως φαίνεται στο σχήμα.
γρίφος παράδοξο σανίδα
Πιάνουμε τη σανίδα από το κάτω άκρο της και την τραβάμε μακριά από τον τοίχο με μικρή αλλά σταθερή ταχύτητα $\nu$. Η σανίδα θα αρχίσει να κινείται τόσο κατά τον οριζόντιο όσο και κατά τον κατακόρυφο άξονα, ενώ θα βρίσκεται σε επαφή με τον τοίχο και το έδαφος.
Θα αποδείξουμε πως το άνω άκρο της σανίδας θα καταλήξει να κινείται με άπειρη ταχύτητα. Προσπαθήστε να ανακαλύψετε σε ποιο από τα παρακάτω βήματα βρίσκεται το λάθος και γιατί.

ΑΠΟΔΕΙΞΗ

  1. Ορίζουμε σαν $x(t)$ την οριζόντια απόσταση που απέχει κάθε χρονική στιγμή $t$ το κάτω άκρο της σανίδας από τον τοίχο.
  2. Ορίζουμε σαν $y(t)$ την κάθετη απόσταση που απέχει κάθε χρονική στιγμή $t$ το άνω άκρο της σανίδας από το έδαφος.
  3. Αφού ο τοίχος, το έδαφος και η σανίδα σχηματίζουν κάθε στιγμή ένα ορθογώνιο τρίγωνο, μπορούμε να γράψουμε:
  4. $$L^2=x(t)^2+y(t)^2$$
  5. Από το Βήμα 3 προκύπτει πως:
  6. $$y(t)=\sqrt{L^2-x(t)^2}$$
  7. Υπολογίζουμε την παράγωγο του $y$ ως προς $t$, με τον κανόνα της αλυσίδας και τον κανόνα της παραγώγισης σύνθετης συνάρτησης:
  8. $$\frac{dy}{dt}=\frac{dy}{dx}\frac{dx}{dt}=\frac{-x}{\sqrt{L^2-x^2}}\frac{dx}{dt}$$
  9. Το διαφορικό $dy/dt$ μπορούμε να το συμβολίσουμε σαν $u(t)$ και είναι η ταχύτητα που κινείται το άνω άκρο της σανίδας πάνω στον τοίχο και το διαφορικό $dx/dt$ είναι η σταθερή ταχύτητα $\nu$ που κινείται το κάτω άκρο της σανίδας πάνω στο έδαφος. Δηλαδή η σχέση στο Βήμα 5 γράφεται:
  10. $$u(t)=\frac{-x(t)\cdot\nu}{\sqrt{L^2-x(t)^2}}$$ Στο ίδιο αποτέλεσμα θα καταλήγαμε και αν υπολογίζαμε την παράγωγο $dy/dt$ στον τύπο του 4ου Βήματος, αναλύοντας το $x(t)$ σε $x_o+\nu t$.
  11. Όσο η σανίδα πλησιάζει να ακουμπήσει ολόκληρη στο έδαφος, το $x$ τείνει στο $L$. Έτσι ο αριθμητής του πιο πάνω κλάσματος τείνει στην τιμή $–L\nu$, η οποία είναι μη μηδενική και ο παρονομαστής τείνει στο μηδέν.
  12. Άρα η ταχύτητα $u(t)$ του άνω άκρου της σανίδας συνεχώς αυξάνεται και ενώ η σανίδα τείνει να ακουμπήσει στο έδαφος, η ταχύτητα τείνει στο άπειρο.

Στείλτε την απάντησή σας εδώ

 

Απόδειξη πως είμαι ο Πάπας με χρήση Διαφορικού Λογισμού (****)
 

Την παρακάτω απόδειξη πως είμαι ο Πάπας την έστειλα στο Βατικανό και περιμένω την απόφασή τους για το σχετικό χρίσμα. Λέτε να γίνει δεκτή ή όχι και γιατί;

  1. Ξεκινάμε με την ισότητα $x^2=x\cdot x$
  2. Το δεύτερο μέλος γράφεται $x+x+x+\ldots+x$   ($x$ φορές)
  3. Άρα $x^2=x+x+x+\ldots+x$   ($x$ φορές)
  4. Παίρνουμε την παράγωγο ως προς $x$ και των δύο μελών: $(x^2)'=(x+x+x+\ldots+x)'$
  5. Επειδή η παράγωγος ενός αθροίσματος ισούται με το άθροισμα των παραγώγων του έχουμε: $(x^2)'=x'+x'+x'+\ldots+x'$
  6. Υπολογίζουμε τις παραγώγους και στα δύο μέλη: $2x=1+1+1+\ldots+1$   ($x$ φορές)
  7. Άρα $2x=x$
  8. Για $x\neq 0$ προκύπτει πως $2=1$
  9. Ο Πάπας είναι ένας.
  10. Κι εγώ είμαι ένας.
  11. Άρα εγώ και ο Πάπας είμαστε δύο.
  12. Επειδή όμως στο Βήμα 8 απέδειξα πως $2=1$, σημαίνει πως εγώ και ο Πάπας είμαστε ένα.
  13. Άρα εγώ είμαι ο Πάπας!

Στείλτε την απάντησή σας εδώ

 

Ένας ελέφαντας ζυγίζει όσο ένα κουνούπι (**)
 

Προσπαθήστε να βρείτε που βρίσκεται το λάθος στον παρακάτω υπολογισμό:

1. Έστω πως $x$ είναι το βάρος ενός ελέφαντα και $y$ είναι το βάρος ενός κουνουπιού.

2. Έστω πως $2b$ είναι το συνολικό τους βάρος. Δηλαδή $x+y=2b$

3. Την πιο πάνω εξίσωση μπορούμε να την γράψουμε με δύο τρόπους: Α) $x=\,–y+2b$     Β) $x–2b=\,–y$

4. Πολλαπλασιάζουμε κατά μέλη τις εξισώσεις Α και Β και παίρνουμε: $x(x–2b)=\,–y(–y+2b)\Leftrightarrow x^2–2xb=y^2–2yb$

5. Προσθέτουμε σε κάθε μέλος της πιο πάνω εξίσωσης το $b^2$ και έχουμε: $x^2–2xb+b^2=y^2–2yb+b^2$

6. Παραγοντοποιούμε και τα δύο μέλη με χρήση της γνωστής ταυτότητας: $(x–b)^2=(y–b)^2$

7. Παίρνουμε την τετραγωνική ρίζα και των δύο μελών: $x–b=y–b$

8. Προσθέτουμε το $b$ και στα δύο μέλη: $x=y$

και καταλήγουμε πως ένας ελέφαντας ζυγίζει όσο ένα κουνούπι!

Στείλτε την απάντησή σας εδώ

 

Προσδιορισμός αριθμών (****)
 

Παρακάτω θα αποδείξουμε πως κάθε φυσικός αριθμός μπορεί να προσδιορισθεί με δεκατέσσερις λέξεις ή λιγότερες. Φυσικοί λέγονται οι ακέραιοι αριθμοί που είναι μεγαλύτεροι του 0. Λέγοντας λέξεις εννοούμε ελληνικές λέξεις που περιέχονται σε οποιοδήποτε λεξικό και οι οποίες πρέπει να σχηματίζουν κάποια φράση με νόημα. Π.χ. η φράση "ο φυσικός αριθμός μεταξύ του τρία και του πέντε" προσδιορίζει τον αριθμό 4.
Η πρόταση είναι προφανώς εσφαλμένη για τον εξής λόγο: Οι ελληνικές λέξεις είναι πεπερασμένες. Οι συνδυασμοί που προκύπτουν από δεκατέσσερις λέξεις επιλεγμένες από ένα πεπερασμένο σύνολο λέξεων είναι επίσης πεπερασμένοι. Οι φυσικοί αριθμοί όμως είναι άπειροι και συνεπώς δεν μπορούν να αντιστοιχιστούν όλοι με κάποιον συνδυασμό 14 ή λιγότερων λέξεων, ακόμα και αν όλοι αυτοί οι συνδυασμοί είχαν κάποιο νόημα.

Η παρακάτω απόδειξη γίνεται με τη μέθοδο της ατόπου απαγωγής που λειτουργεί ως εξής: Θέλουμε να αποδείξουμε πως μία πρόταση Α είναι αληθής. Υποθέτουμε αρχικά πως είναι ψευδής και στη συνέχεια με λογικούς συνειρμούς προσπαθούμε να καταλήξουμε σε αντίφαση. Τότε η υπόθεση που κάναμε πως η πρόταση Α είναι ψευδής δεν είναι σωστή και συνεπώς η πρόταση Α πρέπει να είναι αληθής.
Προσπαθήστε να ανακαλύψετε γιατί η απόδειξη είναι λανθασμένη.

ΑΠΟΔΕΙΞΗ

1. Υποθέτουμε πως υπάρχουν φυσικοί αριθμοί που δεν μπορούν να προσδιορισθούν με δεκατέσσερις λέξεις ή λιγότερες.

2. Ένας από αυτούς τους αριθμούς θα είναι ο μικρότερος τους. Τον ονομάζουμε Ν.

3. Τότε ο αριθμός Ν μπορεί να ορισθεί ως «ο μικρότερος φυσικός αριθμός που δεν μπορεί να προσδιορισθεί με δεκατέσσερις λέξεις ή λιγότερες».

4. Αυτή η πρόταση προσδιορίζει τον αριθμό Ν με δεκατέσσερις λέξεις και άρα έρχεται σε αντίφαση με την υπόθεση πως ο Ν είναι ένας αριθμός που δεν μπορεί να προσδιορισθεί με δεκατέσσερις λέξεις ή λιγότερες.

5. Αφού η αρχική υπόθεση που κάναμε στο Βήμα 1 οδήγησε με λογικά βήματα σε αντίφαση, πρέπει να είναι εσφαλμένη.

6. Άρα όλοι οι φυσικοί αριθμοί μπορούν να προσδιορισθούν με δεκατέσσερις λέξεις ή λιγότερες!

Στείλτε την απάντησή σας εδώ

 

Πάνω στους άλυτους γρίφους

 Λυμένοι Γρίφοι


Όλα τα άλογα έχουν το ίδιο χρώμα (***)
 

Θα αποδείξουμε πως η παρακάτω πρόταση ισχύει για κάθε $ν$ με τη διαδικασία της Επαγωγής:
Πρόταση: $ν$ άλογα έχουν πάντοτε το ίδιο χρώμα.

1) Επαληθεύουμε την Πρόταση για $ν=1$. Πράγματι, ένα άλογο έχει πάντοτε το ίδιο χρώμα με τον εαυτό του.

2) Υποθέτουμε ότι η πρόταση ισχύει για $ν$ άλογα.

3) Θα αποδείξουμε πως η πρόταση ισχύει για $ν+1$ άλογα:
Έστω πως έχουμε μια ομάδα $ν+1$ αλόγων. Ονομάζουμε το πρώτο άλογο της ομάδας $Π$ και το τελευταίο άλογο της ομάδας $Τ$.
Αφαιρούμε το άλογο $Π$ από την ομάδα και αυτά που μένουν είναι $ν$ στον αριθμό. Άρα από την υπόθεση που κάναμε στο βήμα 2, πρέπει να έχουν όλα το ίδιο χρώμα. Οπότε το άλογο $Τ$ έχει το ίδιο χρώμα με τα υπόλοιπα.
Βάζουμε το άλογο $Π$ στη θέση του και αφαιρούμε το άλογο $Τ$ από την ομάδα. Μένουν πάλι $ν$ άλογα που έχουν όλα το ίδιο χρώμα. Οπότε το άλογο $Π$ έχει το ίδιο χρώμα με τα υπόλοιπα.
Αφού τόσο το άλογο $Τ$ όσο και το άλογο $Π$ έχουν το ίδιο χρώμα με τα υπόλοιπα, πρέπει να έχουν το ίδιο χρώμα και μεταξύ τους.
Άρα και τα $ν+1$ άλογα έχουν όλα το ίδιο χρώμα.

Αποδείξαμε με τη διαδικασία της Επαγωγής πως όλα τα άλογα έχουν το ίδιο χρώμα. Που βρίσκεται το λάθος στον παραπάνω συλλογισμό;

Λύση

 

Το παράδοξο της Ωραίας Κοιμωμένης (*****)
 

Η Ωραία Κοιμωμένη δέχτηκε να συμμετάσχει στο παρακάτω πείραμα:
Την Κυριακή θα πάρει μία δόση υπνωτικού και θα πέσει για ύπνο. Ενώ κοιμάται, ένας ερευνητής θα στρίψει ένα νόμισμα.
Αν το νόμισμα έρθει Κορώνα, θα ξυπνήσει την Κοιμωμένη τη Δευτέρα και θα της κάνει την ερώτηση: «ποια είναι η πιθανότητα το νόμισμα που έστριψα να έφερε Κορώνα;». Η Κοιμωμένη θα δώσει την απάντησή της και το πείραμα θα τελειώσει.
Αν το νόμισμα έρθει Γράμματα, θα ξυπνήσει πάλι την Κοιμωμένη τη Δευτέρα και θα της κάνει την ίδια ερώτηση. Η Κοιμωμένη θα απαντήσει, αλλά στη συνέχεια θα της χορηγήσει άλλη μια δόση του υπνωτικού που θα την κοιμίσει μέχρι την Τρίτη. Τότε θα την ξυπνήσει πάλι και θα της επαναλάβει για δεύτερη φορά την ίδια ερώτηση. Η Κοιμωμένη θα απαντήσει και το πείραμα θα τελειώσει.
Η Κοιμωμένη γνωρίζει ακριβώς τους όρους του πειράματος, αλλά σε κανένα ξύπνημά της δεν γνωρίζει τι μέρα είναι, ούτε θυμάται αν έχει ξυπνήσει ξανά.
Ποια είναι η σωστή απάντηση που πρέπει να δώσει μόλις ξυπνήσει;

Το πρόβλημα έχει διχάσει τις γνώμες έμπειρων γριφολυτών, μαθηματικών και φιλοσόφων. Υπάρχουν τρεις διαφορετικές σχολές σκέψης: Οι halfers, που υποστηρίζουν πως η πιθανότητα είναι 1/2, οι thirders που υποστηρίζουν πως η πιθανότητα είναι 1/3 και οι ουδέτεροι που υποστηρίζουν πως το πρόβλημα δεν έχει ξεκάθαρη λύση γιατί δεν ορίζεται επαρκώς. Αυτός είναι ο λόγος που έχει χαρακτηριστεί παράδοξο, ενώ η διαμάχη των halfers με τους thirders συνεχίζεται μέχρι και σήμερα.

Λύση

 

Πέντε προτάσεις (**)
 

Διαβάστε τις παρακάτω πέντε προτάσεις και αποφασίστε ποιες από αυτές είναι αληθείς και ποιες ψευδείς:

Η επόμενη πρόταση είναι αληθής.
Η επόμενη πρόταση είναι ψευδής.
Η επόμενη πρόταση είναι αληθής.
Η επόμενη πρόταση είναι ψευδής.
Η πρώτη πρόταση είναι αληθής.

Στη συνέχεια κάντε το ίδιο και για τις παρακάτω πέντε προτάσεις:

Η επόμενη πρόταση είναι ψευδής.
Η επόμενη πρόταση είναι αληθής.
Η επόμενη πρόταση είναι ψευδής.
Η επόμενη πρόταση είναι αληθής.
Η πρώτη πρόταση είναι ψευδής.

Παρατηρείτε μια ουσιαστική διαφορά μεταξύ των δύο ομάδων προτάσεων; Πού οφείλεται;

Λύση

 

Όλα τα τρίγωνα είναι ισοσκελή (**)
 

γρίφος παράδοξο ισοσκελές τρίγωνο

1. Κατασκευάζουμε ένα τυχαίο τρίγωνο ΑΒΓ.
2. Φέρνουμε τη διχοτόμο της γωνίας Α και τη μεσοκάθετη της πλευράς ΒΓ. Το σημείο που τέμνονται το ονομάζουμε Η. Από το σημείο Η φέρνουμε κάθετες και προς τις άλλες δύο πλευρές.
3. Τα ορθογώνια τρίγωνα ΑΕΗ και ΑΖΗ είναι ίσα, επειδή έχουν ίση τη μισή γωνία Α και την πλευρά ΑΗ κοινή. Άρα ΑΕ = ΑΖ (1).
4. Τα ορθογώνια τρίγωνα ΒΔΗ και ΓΔΗ είναι ίσα, επειδή έχουν ΒΔ = ΔΓ και την πλευρά ΗΔ κοινή. Άρα ΗΒ = ΗΓ.
5. Τα ορθογώνια τρίγωνα ΒΕΗ και ΓΖΗ είναι ίσα, επειδή έχουν ΗΒ = ΗΓ (από το Βήμα 4) και ΕΗ = ΗΖ (από το Βήμα 3). Άρα ΕΒ = ΖΓ (2).
6. Με πρόσθεση κατά μέλη των (1) και (2) προκύπτει πως ΑΒ = ΑΓ.
7. Άρα το τυχαίο τρίγωνο είναι ισοσκελές.

Που βρίσκεται το λάθος;

Λύση

 

Ανταλλαγή φακέλων (****)
 

Η Αλίκη και ο Βασίλης τραβάνε στην τύχη από έναν κλειστό φάκελο ο καθένας. Ο οργανωτής του παιχνιδιού τους λέει πως ο κάθε φάκελος έχει μέσα ένα χρηματικό ποσό το οποίο το έχουν ήδη κερδίσει. Τους λέει επίσης ότι ο ένας φάκελος έχει το διπλάσιο ποσό από τον άλλον, χωρίς να τους αποκαλύψει ποιος. Στη συνέχεια τους δίνεται το δικαίωμα αν θέλουν να ανταλλάξουν μεταξύ τους φακέλους.
Η Αλίκη υπολογίζει το κέρδος που αναμένεται να έχει αν δεχτεί να αλλάξει φακέλους ως εξής:
Αν x είναι το ποσό που έχει μέσα ο φάκελός της, τότε με πιθανότητα 1/2 διπλασιάζει το ποσό της, οπότε θα έχει κέρδος x, ενώ με πιθανότητα 1/2 υποδιπλασιάζει το ποσό της, οπότε θα έχει κέρδος –x/2. Σύμφωνα με αυτόν τον συλλογισμό το αναμενόμενο κέρδος της είναι:
(1/2) * x + (1/2) * –x/2 = x/4.
Άρα έχει 25% αναμενόμενο κέρδος αν αλλάξει φακέλους και συνεπώς δέχεται να κάνει την αλλαγή.
Τον ίδιο συλλογισμό κάνει και ο Βασίλης από τη δική του πλευρά και καταλήγει φυσικά στο ίδιο συμπέρασμα, ότι δηλαδή τον συμφέρει κι αυτόν να αλλάξει φακέλους.
Έτσι πραγματοποιείται η αλλαγή. Πριν όμως ανοίξουν τους φακέλους τους και αποκαλυφθούν τα ποσά που κρύβουν, η Αλίκη επαναλαμβάνει τον συλλογισμό της και βρίσκει πως η εκ νέου αλλαγή φακέλων θα της αποφέρει ένα επιπλέον κέρδος λίγο μεγαλύτερο του 25%, το οποίο προκύπτει αν αντί του x στον τύπο βάλουμε το x + x/4 που είναι το ποσό που αναμένει να έχει τώρα στον φάκελό της. Το ίδιο υπολογίζει και ο Βασίλης, οπότε ξανα-αλλάζουν φακέλους και ο καθένας τους θεωρεί πως τώρα έχει ένα αναμενόμενο κέρδος λίγο μεγαλύτερο του 50%. Με το ίδιο σκεπτικό συνεχίζουν να αλλάζουν φακέλους μέχρι να γίνουν και οι δύο πάμπλουτοι.
Στην παραπάνω λογική κάτι πρέπει να πηγαίνει τελείως λάθος, αλλά τι ακριβώς;

Λύση

 

Το παράδοξο της Αγίας Πετρούπολης (****)
 

Κάποιος σας προτείνει να παίξετε ένα παιχνίδι τύχης με τους εξής όρους: Θα ρίχνετε συνεχώς ένα νόμισμα μέχρι αυτό να φέρει για πρώτη φορά Κορώνα. Αν αυτό συμβεί με την πρώτη σας προσπάθεια θα σας δώσει 2 ευρώ και το παιχνίδι θα τελειώσει. Αν συμβεί με τη δεύτερη προσπάθειά σας θα σας δώσει 4 ευρώ. Αν συμβεί με την τρίτη θα σας δώσει 8 ευρώ και γενικά όσο περισσότερο καθυστερεί η εμφάνιση της πρώτης Κορώνας, τόσο αυτός θα διπλασιάζει το ποσό που θα κερδίσετε. Το ερώτημα είναι ποιο είναι το μέγιστο ποσό που διατίθεστε να πληρώσετε σαν εισιτήριο για να συμμετάσχετε στο παιχνίδι;

Ας προσπαθήσουμε να δώσουμε μια μαθηματική απάντηση στο πρόβλημα στην περίπτωση που ο διοργανωτής σας έλεγε πως θα ρίξετε το νόμισμα μία φορά και αν δεν φέρετε Κορώνα δεν θα πάρετε τίποτα. Τότε το αναμενόμενο κέρδος σας θα ήταν:
1/2 * 2 ευρώ + 1/2 * 0 ευρώ = 1 ευρώ και άρα μέχρι 1 ευρώ θα σας συνέφερε να πληρώσετε σαν εισιτήριο για να παίξετε.
Αν ο διοργανωτής σας έλεγε πως θα ρίξετε το νόμισμα μέχρι δύο φορές το πολύ και αν δεν φέρετε Κορώνα μέχρι τότε δεν θα πάρετε τίποτα, τότε το αναμενόμενο κέρδος σας θα ήταν:
1/2 * 2 ευρώ + 1/2 * (1/2 * 4 ευρώ + 1/2 * 0 ευρώ) = 2 ευρώ και άρα μέχρι 2 ευρώ θα σας συνέφερε να πληρώσετε σαν εισιτήριο για να παίξετε.
Γενικεύοντας, γίνεται φανερό πως αν ο διοργανωτής σας έλεγε πως θα ρίξετε το νόμισμα μέχρι Ν φορές το πολύ, τότε θα σας συνέφερε να πληρώσετε μέχρι Ν ευρώ για να συμμετάσχετε στο παιχνίδι.

Στην πραγματική περίπτωση ο διοργανωτής δεν έθεσε περιορισμό για το μέχρι πόσες φορές μπορείτε να ρίξετε το νόμισμα και αυτό εξαρτάται μόνο από το πότε θα έρθει η πρώτη Κορώνα. Επειδή η πρώτη Κορώνα μπορεί να καθυστερήσει απεριόριστες επαναλήψεις να εμφανισθεί, προκύπτει πως σαν συμφέρει να πληρώσετε ένα απεριόριστα μεγάλο ποσό για να συμμετάσχετε στο παιχνίδι.
Παρ' όλ' αυτά, είναι απίθανο κάποιος να δεχτεί να πληρώσει περισσότερα από 10 ευρώ περίπου για να παίξει. Που νομίζετε ότι οφείλεται αυτή η τεράστια διαφορά μεταξύ του μαθηματικού υπολογισμού και της ανθρώπινης διαίσθησης;

Λύση

 

Ανακατασκευή τετραγώνου (****)
 

Παίρνουμε ένα τετράγωνο χαρτόνι και το διαγραμμίζουμε σε οκτώ επί οκτώ ίσα μικρότερα τετράγωνα, σαν σκακιέρα. Στη συνέχεια κόβουμε το χαρτόνι πάνω στις γραμμές που φαίνονται στο πρώτο σχήμα.
γρίφος κόψιμο τετραγώνου
Αναδιατάσσουμε τα κομμάτια ώστε να σχηματίσουμε ένα νέο σχήμα που είναι ένα ορθογώνιο παραλληλόγραμμο με διαστάσεις 13 x 5, όπως φαίνεται στο δεύτερο σχήμα.
γρίφος παράδοξο αναδιάταξη τετράγωνο
Το αρχικό τετράγωνο αποτελούνταν από 8 x 8 = 64 μικρότερα τετράγωνα, ενώ το νέο σχήμα αποτελείται από 13 x 5 = 65 τετράγωνα. Πώς προέκυψε αυτό το επιπλέον τετραγωνάκι;

Λύση

 

Το παράδοξο του Russell (*****)
 

Σε μια βιβλιοθήκη υπάρχουν κάποιοι κατάλογοι που περιέχουν τίτλους βιβλίων σχετικών με κάποιο θέμα.
Για την καλύτερη εξυπηρέτηση των αναγνωστών, υπάρχουν και κάποιοι πιο γενικοί κατάλογοι οι οποίοι περιέχουν τίτλους των προηγούμενων καταλόγων αναλόγως με το θέμα στο οποίο αναφέρονται.
Από λάθος όμως, μερικοί από αυτούς τους γενικούς καταλόγους περιέχουν και τον τίτλο του εαυτού τους. Όταν ο υπεύθυνος της βιβλιοθήκης αντιλήφθηκε το λάθος αποφάσισε να φτιάξει έναν νέο κατάλογο, τον οποίο ονόμασε «Κατάλογος Σωστών Καταλόγων» και ο οποίος θα περιέχει όλους τους τίτλους των γενικών καταλόγων που δεν περιέχουν τον εαυτό τους.
Και εδώ εμφανίζεται το παράδοξο: Θα πρέπει να συμπεριλάβει στον νέο κατάλογό του τον καινούργιο τίτλο; Αν τον συμπεριλάβει τότε θα περιέχει τον εαυτό του και άρα δεν θα είναι σωστός κατάλογος. Αν δεν τον συμπεριλάβει τότε ο νέος κατάλογος δεν θα περιέχει όλους τους τίτλους των γενικών καταλόγων που δεν περιέχουν τον εαυτό τους.

Λύση

 

Το παράδοξο του Ζήνωνα (*)
 

Ο Αχιλλέας έκανε αγώνα δρόμου με μια χελώνα. Επειδή όμως ήταν σαφώς πιο γρήγορος από αυτήν, ξεκίνησαν με μια απόσταση μεταξύ τους S0. Όταν ο Αχιλλέας έφτασε στο σημείο που βρισκόταν αρχικά η χελώνα, αυτή στο μεταξύ είχε προχωρήσει κατά μια απόσταση S1. Όταν ο Αχιλλέας κάλυψε την απόσταση S1, η χελώνα είχε στο μεταξύ προχωρήσει κατά μια μικρότερη απόσταση S2.
Επαναλαμβάνοντας αυτή τη διαδικασία φαίνεται πως ο Αχιλλέας δεν θα μπορούσε ποτέ να ξεπεράσει τη χελώνα. Ποια είναι η λύση αυτού του παραδόξου;

Λύση

 

Ποιος ξυρίζει τον κουρέα; (**)
 

Σε ένα χωριό ισχύουν οι παρακάτω δύο κανόνες:

1) Υπάρχει μόνο ένας κουρέας
2) Ο κάθε κάτοικος είτε ξυρίζεται μόνος του είτε τον ξυρίζει ο κουρέας

Το ερώτημα που προκύπτει είναι ποιος ξυρίζει τον κουρέα;

- Αν ξυρίζεται μόνος του τότε δεν τον ξυρίζει ο κουρέας, πράγμα άτοπο, γιατί ο ίδιος είναι κουρέας.
- Αν τον ξυρίζει κάποιος άλλος τότε αυτός ο άλλος πρέπει να είναι κουρέας, πράγμα άτοπο γιατί υπάρχει μόνο ένας κουρέας.

Λύση

 

Το διαγώνισμα έκπληξη (**)
 

Μια Παρασκευή μεσημέρι λέει η δασκάλα στους μαθητές της ότι την επόμενη εβδομάδα θα τους βάλει ένα διαγώνισμα έκπληξη, δηλαδή δεν θα το περιμένουν.
Αφού βγαίνει από την αίθουσα οι μαθητές κάθονται και σκέφτονται ψύχραιμα πως αν το διαγώνισμα δεν έχει μπει μέχρι την ερχόμενη Πέμπτη, τότε η μόνη διαθέσιμη μέρα για να μπει θα είναι η Παρασκευή. Τότε όμως όλοι θα το περιμένουν και άρα δεν θα είναι πια έκπληξη, οπότε η δασκάλα δεν μπορεί να βάλει το διαγώνισμα την Παρασκευή.
Αν περάσει η Τετάρτη και το διαγώνισμα δεν έχει μπει, τότε με δεδομένο ότι δεν μπορεί να μπει ούτε την Παρασκευή, θα πρέπει αναγκαστικά να μπει την Πέμπτη. Και πάλι όμως τότε όλοι θα το περιμένουν, οπότε ούτε και την Πέμπτη μπορεί να μπει το διαγώνισμα.
Συνεχίζοντας αυτή τη συλλογιστική, αποκλείονται μία-μία όλες οι μέρες της εβδομάδας και άρα η δασκάλα δεν μπορεί καμία μέρα να βάλει το διαγώνισμα έκπληξη.
Πώς εξηγείται αυτό το παράδοξο;

Λύση

 

Το παράδοξο του Πρωταγόρα (***)
 

Στον Πρωταγόρα αποδίδεται το παρακάτω θεωρητικό παράδοξο:
Ο Αρίστιππος ζήτησε από τον Πρωταγόρα να του διδάξει Νομική. Επειδή όμως δεν είχε λεφτά να τον πληρώσει, συμφώνησαν ο Πρωταγόρας να πληρωθεί μόλις ο Αρίστιππος κερδίσει την πρώτη του δίκη.
Ο Αρίστιππος όμως δεν τα κατάφερνε καθόλου καλά στο δικαστήριο και έτσι ο Πρωταγόρας του ζήτησε την καταβολή των χρημάτων του, παρόλο που δεν είχε κερδίσει ακόμα καμία δίκη. Ο Αρίστιππος αρνήθηκε επικαλούμενος τη συμφωνία τους και το θέμα έφτασε στα δικαστήρια.
Ο δικαστής που άκουσε την υπόθεση βρέθηκε στο παρακάτω λογικό παράδοξο:
Αν δικαίωνε τον Αρίστιππο με απόφαση να μην πληρώσει τον Πρωταγόρα τότε ο Αρίστιππος θα είχε μόλις κερδίσει την πρώτη του δίκη και για το λόγο αυτό θα έπρεπε να πληρώσει τον Πρωταγόρα.
Αν από την άλλη, δικαίωνε τον Πρωταγόρα με απόφαση να πληρωθεί από τον Αρίστιππο τότε ο τελευταίος δεν θα είχε κερδίσει ακόμα την πρώτη του δίκη και έτσι δεν θα έπρεπε να πληρώσει τον Πρωταγόρα.
Πώς θα βγει ο δικαστής από αυτό το αδιέξοδο;

Λύση

 

Άτοπη εξίσωση (**)
 

Ξεκινώντας από την υπόθεση ότι $α=β$ και με μια σειρά συνεπαγωγών καταλήγουμε στο αποτέλεσμα ότι $2=1$. Που βρίσκεται το λάθος;

$$α=β \Leftrightarrow$$ $$α^2=αβ \Leftrightarrow$$ $$α^2-β^2=αβ-β^2 \Leftrightarrow$$ $$(α+β)(α-β)=β(α-β) \Leftrightarrow$$ $$2β(α-β)=β(α-β) \Leftrightarrow$$ $$2β=β \Leftrightarrow$$ $$2=1$$

Λύση

 

Παράδοξο της διαγωνίου (*)
 

Έχουμε ένα τετράγωνο πλευράς 1 μέτρου και πρέπει να ενώσουμε με το μολύβι τις δύο απέναντι κορυφές του. Μπορούμε όμως να φέρνουμε ευθύγραμμα τμήματα, όσο μικρά θέλουμε, που όμως πρέπει να είναι παράλληλα ή κάθετα με τις πλευρές του τετραγώνου.
Ο πιο απλός τρόπος είναι να φέρουμε πρώτα μια ευθεία πάνω στη βάση του και μετά μία πάνω στο ύψος του. Έτσι το συνολικό μήκος της γραμμής που φέραμε είναι 2 μέτρα.
Είναι αξιοσημείωτο ότι όσο μικρά κι αν είναι τα ευθύγραμμα τμήματα που φέρνουμε, το συνολικό τους μήκος είναι πάντα 2 μέτρα, όπως φαίνεται στο σχήμα για τμήματα που ισούνται με το 1/5 και το 1/20 της πλευράς του τετραγώνου.
Για τμήματα ίσα με το 1/100 της πλευράς ή ακόμα μικρότερα, ουσιαστικά έχουμε φέρει τη διαγώνιο του τετραγώνου. Πώς γίνεται όμως το συνολικό μήκος της γραμμής μας να είναι 2 μέτρα, αφού ως γνωστόν το μήκος της διαγωνίου είναι ρίζα 2 ;

γρίφος παράδοξο διαγώνιος

Λύση

 

Που πήγε η γραμμή; (***)
 

Εάν κόψουμε το παρακάτω σχήμα κατά μήκος της διαγωνίου γραμμής και στη συνέχεια σύρουμε το επάνω τμήμα προς τα αριστερά, έτσι ώστε να συμπέσουν οι κάθετες γραμμές μεταξύ τους, θα δούμε πως οι 10 κάθετες γραμμές έγιναν τώρα 9. Που πήγε η 10η γραμμή;

γρίφος παράδοξο με γραμμή

Λύση

 

Χαμένο ευρώ (****)
 

Τρεις φίλοι μπαίνουν σε μια κάβα και αγοράζουν ένα μπουκάλι κρασί που κοστίζει 30 ευρώ δίνοντας 10 ευρώ ο καθένας. Φεύγοντας, τους προλαβαίνει ο υπάλληλος και τους λέει πως έκανε λάθος γιατί το μπουκάλι στοιχίζει 25 και όχι 30 ευρώ και γι' αυτό τους επιστρέφει 5 ευρώ ρέστα. Αυτοί, αφού δεν μπορούν να μοιράσουν τα 5 ευρώ στα τρία, παίρνουν από 1 ευρώ ο καθένας και δίνουν 2 ευρώ φιλοδώρημα στον υπάλληλο για την καλή του πράξη. Στο τέλος όμως σκέφτονται: Έδωσε ο καθένας μας 10 ευρώ και πήρε ένα πίσω, άρα ο καθένας πλήρωσε 9 ευρώ. Τρεις φορές το 9 μας κάνει 27 και 2 ευρώ για το φιλοδώρημα, 29. Τι έγινε το ένα ευρώ;

Λύση

 


Πίσω

Απαγορεύεται η αναδημοσίευση των περιεχομένων αυτής της ιστοσελίδας χωρίς την έγγραφη άδεια του δημιουργού της.